18 research outputs found

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans

    Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study

    Get PDF
    ABSTRACT: BACKGROUND: Currently, custom foot and ankle orthosis prescription and design tend to be based on traditional techniques, which can result in devices which vary greatly between clinicians and repeat prescription. The use of computational models of the foot may give further insight in the biomechanical effects of these devices and allow a more standardised approach to be taken to their design, however due to the complexity of the foot the models must be highly detailed and dynamic. METHODS: Functional and anatomical datasets will be collected in a multicentre study from 10 healthy participants and 15 patients requiring orthotic devices. The patient group will include individuals with metarsalgia, flexible flat foot and drop foot. Each participant will undergo a clinical foot function assessment, 3D surface scans of the foot under different loading conditions, and detailed gait analysis including kinematic, kinetic, muscle activity and plantar pressure measurements in both barefoot and shod conditions. Following this each participant will undergo computed tomography (CT) imaging of their foot and ankle under a range of loads and positions while plantar pressures are recorded. A further subgroup of participants will undergo magnetic resonance imaging (MRI) of the foot and ankle. Imaging data will be segmented to derive the size of bones and orientation of the joint axes. Insertion points of muscles and ligaments will be determined from the MRI and CT-scans and soft tissue material properties computed from the loaded CT data in combination with the plantar pressure measurements. Gait analysis data will be used to drive the models and in combination with the 3D surface scans for scaling purposes. Predicted plantar pressures and muscle activation patterns predicted from the models will be compared to determine the validity of the models. DISCUSSION: This protocol will lead to the generation of unique datasets which will be used to develop linked inverse dynamic and forward dynamic biomechanical foot models. These models may be beneficial in predicting the effect of and thus improving the efficacy of orthotic devices for the foot and ankle

    A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis

    Get PDF
    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important

    Hip, knee, and ankle joint forces in healthy weight, overweight, and obese individuals during walking

    No full text
    Worldwide in 2008, more than 1.4 billion adults, age 20 and older, were overweight. Overweight and obesity are defined as abnormal or excessive fat accumulation that may impair health. The World Health Organization defines overweight as having a body mass index (BMI) greater than or equal to 25 kg/m2 and obese as a BMI greater than or equal to 30 kg/m2. The aim of this study was to compare peak hip, knee, and ankle joint compressive loads during gait at self-selected speed between overweight and healthy weight individuals and to examine the functional relationship between body mass and peak joint forces. Twelve subjects, six high BMI subjects and six normal BMI control subjects, participated in this investigation. Absolute peak hip, knee, and ankle joint forces were 40 %, 43 %, and 48 % greater, respectively, for the high-BMI versus normal group. Joint loads were found to increase approximately linearly with body mass. Body mass accounted for 70-80 % of the variation in the peak compressive load at the hip, knee, and ankle during gait. These findings support the link that increased body mass leads to increased biomechanical loading of the joints and could be a factor linking obesity to osteoarthritis

    Multibody Optimisations: From Kinematic Constraints to Knee Contact Forces and Ligament Forces. In : Biomechanics of Anthropomorphic Systems

    No full text
    Musculoskeletal models are widely used in biomechanics today to better understand muscle and joint function. Musculo-tendon forces as well as joint contact forces and ligament forces can be estimated within an inverse dynamics computational framework. Using a musculoskeletal model of the lower limb, this chapter presents the different optimisations required to drive the model with experimental data and to compute these forces and their interactions. In these optimisations, the development of anatomical constraints representing, for example, the medial and lateral tibiofemoral contacts or the cruciate ligaments is crucial both to inverse kinematics and to inverse dynamics. Some emblematic results are presented for knee contact forces and ligament forces during gait, illustrating the couplings between joint degrees of freedom and the interactions between forces acting both in muscles and in joints
    corecore